Объявление

Свернуть
Пока нет объявлений.

Обрежьте жирок с RS-485

Свернуть
X
Свернуть

  • Обрежьте жирок с RS-485

    Заставить похудеть конструкции с применением RS-485 просто, если вы понимаете, как в то же самое время сохранить хорошее качество связи. Эта статья охватывает факты, мифы и злые шутки, о которых вам следует знать для достижения этой цели.
    В системах промышленной автоматизации и автоматизации зданий применяется ряд удаленных устройств сбора данных, которые передают и принимают информацию через центральный модуль, предоставляющий доступ к данным пользователям и другим процессорам. Регистраторы данных и считывающие устройства типичны для таких приложений. Почти идеальная линия передачи данных для этих целей определена стандартом RS-485, который связывает устройства сбора данных кабелем на основе витой пары.
    Поскольку многие из устройств сбора и накопления данных в сетях RS-485 являются компактными автономными устройствами с батарейным питанием, для контроля за их тепловыделением и увеличения срока службы батарей необходимо принятие мер по снижению их энергопотребления. Точно так же экономия энергии важна для носимых устройств и других приложений, в которых интерфейс RS-485 используется для загрузки данных в центральный процессор.
    Следующий раздел предназначен в первую очередь для тех, кто не знаком с RS-485.
    RS-485: история и описание
    Стандарт RS-485 был совместно разработан двумя ассоциациями производителей: Ассоциацией электронной промышленности (EIA - Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA - Telecommunications Industry Associastion). EIA некогда маркировала все свои стандарты префиксом "RS" (Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил "RS" на "EIA/TIA" с целью облегчить идентификацию происхождения своих стандартов. На сегодняшний день, различные расширения стандарта RS-485 охватывают широкое разнообразие приложений.
    Стандарты RS-485 и RS-422 имеют много общего, и поэтому их часто путают. Таблица 1 сравнивает их. RS-485, определяющий двунаправленную полудуплексную передачу данных, является единственным стандартом EIA/TIA, допускающим множественные приемники и драйверы в шинных конфигурациях. EIA/TIA-422, с другой стороны, определяет единственный однонаправленный драйвер с множественными приемниками. Элементы RS-485 обратно совместимы и взаимозаменяемы со своими двойниками из RS-422, однако драйверы RS-422 не должны использоваться в системах на основе RS-485, поскольку они не могут отказаться от управления шиной.
    Таблица 1. Стандарты RS-485 и RS-422
    RS-422 RS-485
    Режим работы Дифференциальный Дифференциальный
    Допустимое число Tx и Rx 1 Tx, 10 Rx 32 Tx, 32 Rx
    Максимальная длина кабеля 1200 м 1200 м
    Максимальная скорость передачи данных 10 Мбит/с 10 Мбит/с
    Минимальный выходной диапазон драйвера ± 2 В ± 1.5 В
    Максимальный выходной диапазон драйвера ± 5 В ± 5 В
    Максимальный ток короткого замыкания драйвера 150 мА 250 мА
    Сопротивление нагрузки Tx 100 Ом 54 Ом
    Чувствительность по входу Rx ± 200 мВ ± 200 мВ
    Максимальное входное сопротивление Rx 4 кОм 12 кОм
    Диапазон напряжений входного сигнала Rx ± 7 В от -7 В до +12 В
    Уровень логической единицы Rx > 200 мВ > 200 мВ
    Уровень логического нуля Rx < 200 мВ < 200 мВ
    Защита от электростатических разрядов
    Дифференциальная передача сигнала в системах на основе RS-485 и RS-422 обеспечивает надежную передачу данных в присутствии шумов, а дифференциальные входы их приемников кроме того могут подавлять значительные синфазные напряжения. Однако для защиты от значительно больших уровней напряжений, которые обычно ассоциируются с электростатическим разрядом (ESD), необходимо принимать дополнительные меры.
    Заряженная емкость человеческого тела позволяет человеку уничтожать интегральную схему простым ее касанием. Такой контакт запросто может произойти при прокладке и подключении интерфейсного кабеля. Для защиты от таких разрушительных воздействий, интерфейсные микросхемы MAXIM включают "ESD структуры". Эти структуры защищают выходы передатчиков и входы приемников в приемопередатчиках RS-485 от уровней ESD до ±15кВ.
    Чтобы гарантировать заявленную защиту от ESD, Maxim осуществляет многократное тестирование положительных и отрицательных выводов питания с шагом 200В, для проверки последовательности уровней до ±15кВ. Устройства этого класса (отвечающие спецификациям модели человеческого тела (Human Body Model) или IEC 1000-4-2) маркируются в обозначении изделия дополнительным суффиксом "E".
    Скорости передачи данных и нагрузка драйвера
    Допустимая нагрузка драйвера RS-485/RS-422 количественно определяется в терминах единичной нагрузки, которая, в свою очередь, определяется как входной импеданс одного стандартного приемника RS-485 (12кОм). Таким образом, стандартный драйвер RS-485 может управлять 32 единичными нагрузками (32 параллельных 12-килоомных нагрузки). Однако для некоторых приемников RS-485 входное сопротивление является более высоким - 48 кОм (1/4 единичной нагрузки) или даже 96 кОм (1/8 единичной нагрузки) - и, соответственно, к одной шине могут быть подключены сразу 128 или 256 таких приемников. Вы можете подключить любую комбинацию типов приемников, если их параллельный импеданс не превышает 32 единичных нагрузки (т.е. суммарное сопротивление не меньше 375 Ом).
    Последствия высоких скоростей
    Более быстрые передачи требуют более высоких скоростей нарастания напряжения на выходе драйвера, а они, в свою очередь, производят большие уровни электромагнитных помех (EMI). Некоторые приемопередатчики RS-485 сводят EMI к минимуму, ограничивая их скорости нарастания. Меньшие скорости нарастания также помогают контролировать отражения, вызванные быстрыми переходными процессами, высокими скоростями передачи данных или длинными линиями связи. Основой для минимизации отражений является использование согласующих резисторов с номиналами, соответствующими волновому сопротивлению кабеля. Для обычных кабелей RS-485 (витая пара проводов 24AWG) это означает размещение 120-омных резисторов на обоих концах линии связи.
    Куда уходит вся мощность?
    Очевидным источником потери мощности является ток покоя приемопередатчика (IQ), который в современных устройствах значительно снижен. В таблице 2 токи покоя малопотребляющих КМОП приемопередатчиков сравниваются с являющимся промышленным стандартом устройством 75176.
    Таблица 2. Сравнение токов утечки для различных приемопередатчиков RS-485
    Устройство IQ (Драйвер отключен) IQ (драйвер включен) Ток в режиме отключения Макс. скорость
    MAX3471 2,8 мкА 83 мкА N/A 64 Кбит/с
    MAX1483 20 мкА 55 мкА 0,1 мкА 250 Кбит/с
    MAX3088 (SRL = GND) 420 мкА 475 мкА 1 нА 10 Мбит/с
    SN75ALS176 26 мкА 30 мкА N/A 35 Мбит/с
    Другая характеристика энергопотребления приемопередатчиков RS-485 проявляется при отсутствии нагрузки, разрешении выхода драйвера и присутствии периодического входного сигнала. Поскольку открытых линий в RS-485 нужно избегать всегда, драйверы "долбят" свои выходные структуры при каждом переключении выхода. Это короткое включение обоих выходных транзисторов немедленно вызывает бросок тока питания. Достаточно большой входной конденсатор сглаживает эти броски, производя действующий (RMS) ток, который растет вместе со скоростью передачи данных до своего максимального значения. Для приемопередатчиков MAX1483 этот максимум равен примерно 15 мА.
    Подключение стандартного приемопередатчика RS-485 к минимальной нагрузке (еще один приемопередатчик, два согласующих и два защитных резистора) позволяет измерить зависимость тока питания от скорости передачи данных в более реальных условиях. На рисунке 2 представлена зависимость ICC от скорости передачи данных для MAX1483 при следующих условиях: стандартные резисторы на 560 Ом, 120 Ом и 560 Ом, VCC = 5В, DE = /RE = VCC, и кабель длиной 300 м.
    Как вы можете видеть из рисунка 2, ток потребления возрастает приблизительно до 37мА даже при чрезвычайно низких скоростях передачи данных; это вызвано прежде всего добавлением согласующих резисторов и резисторов защитного смещения. Для малопотребляющих приложений, это должно продемонстрировать важность типа используемого согласования, равно как и способа достижения отказоустойчивости. Отказоустойчивость обсуждается в следующем разделе, а подробное описание согласования имеется в разделе "Злые шутки согласования".
    Отказоустойчивость
    При напряжениях на входах приемников RS-485 в диапазоне от -200мВ до +200мВ, выходное состояние остается неопределенным. Иными словами, если дифференциальное напряжение на стороне RS-485 в полудуплексной конфигурации равно 0В и ни один из приемопередатчиков не ведет линию (или соединение разорвано), тогда логическая единица и логический ноль на выходе равновероятны. Для обеспечения определенного состояния на выходе в таких условиях, большинство современных приемопередатчиков RS-485 требуют установки резисторов защитного смещения: резистор задания начального высокого уровня (pullup) на одну линию (A) и низкого уровня (pulldown) на другую (B), как это показано на рисунке 1. Исторически, резисторы защитного смещения в большинстве схем указывались с номиналом 560 Ом, однако для снижения энергопотерь (когда согласование производится только на одном конце линии связи) это значение можно увеличить приблизительно до 1,1 кОм. Некоторые разработчики устанавливают на обоих концах резисторы с номиналами от 1,1кОм до 2,2кОм. Здесь приходится искать компромисс между помехоустойчивостью и энергопотреблением.
    Нажмите на изображение для увеличения. 

Название:	A184Fig01.gif 
Просмотров:	1 
Размер:	2.7 Кб 
ID:	1446 alt="" />
    Рисунок 1. Три внешних резистора формируют цепь согласования и защитного смещения для данного приемопередатчика RS-485.
    Нажмите на изображение для увеличения. 

Название:	A184Fig02.gif 
Просмотров:	1 
Размер:	4.0 Кб 
ID:	1447 alt="" />
    Рисунок 2. Зависимость тока питания приемопередатчика MAX1483 от скорости передачи данных.
    Производители приемопередатчиков RS-485 прежде исключали необходимость использования внешних смещающих резисторов, обеспечивая внутренние резисторы положительного смещения по входам приемника, однако такой подход был эффективен только для решения проблемы разомкнутых цепей. Резисторы положительного смещения, используемые в этих псевдоотказоустойчивых приемниках были слишком слабы для установления уровня на выходе приемника в согласованной шине. Другие попытки избежать использования внешних резисторов за счет изменения пороговых значений приемника на 0В и -0,5В нарушали спецификацию RS-485.
    Семейство приемопередатчиков MAX3080 и MAX3471 компании Maxim решило обе эти проблемы, определив точный диапазон пороговой чувствительности от -50мВ до -200мВ, устранив, таким образом, потребность в резисторах защитного смещения, сохраняя при этом полное соответствие стандарту RS-485. Эти микросхемы гарантируют, что 0В на входе приемника вызовет высокий логический уровень на выходе. Более того, эта конструкция гарантирует известное состояние выхода приемника для условий замкнутой и разорванной линии.
    Как сохранить энергию?
    Как было показано в таблице 2, приемопередатчики сильно различаются значениями их токов покоя. Таким образом первым шагом в деле сохранения энергии должен стать выбор малопотребляющего устройства, такого, как MAX3471 (2,8 мкА при отключенном драйвере, до 64 Кбит/с). Поскольку потребление энергии существенно возрастает при передаче данных, другой целью является минимизация времени работы драйверов за счет передачи коротких телеграмм (блоков данных, прим. пер.) с длительными периодами ожидания между ними. В таблице 3 представлена структура типовой телеграммы последовательной передачи.
    Таблица 3. Телеграмма последовательной передачи
    Биты управления Адресные биты Биты данных Контрольные биты Биты управления
    Система на основе RS-485, использующая приемники в одну единичную нагрузку (до 32 адресуемых устройств), может, например, иметь следующие биты: 5 битов адреса, 8 битов данных, стартовые биты (все кадры), стоповые биты (все кадры), биты четности (необязательные), и биты CRC (необязательные). Минимальная длина телеграммы для такой конфигурации - 20 битов. Для безопасных передач, вы должны послать дополнительную информацию, такую как размер данных, адрес отправителя и направление, которая увеличит длину телеграммы до 255 байтов (2040 битов).
    Подобное изменение длины телеграммы со структурой, определяемой такими стандартами, как X.25, обеспечивает надежность данных за счет увеличения времени использования шины и потребляемой мощности. Например, передача 20 битов при 200 Кбит/с потребует 100 мкс. При использовании MAX1483 для ежесекундной отправки данных на скорости 200 Кбит/с, средний ток составит
    (100 мкс * 53 мА + (1 с - 100 мкс) * 20 мкА) / 1 с = 25.3 мкА
    Когда приемопередатчик находится в неактивном режиме (idle mode), его драйвер должен быть отключен для минимизации потребляемой мощности. В таблице 4 демонстрируется влияние длины телеграммы на потребляемую мощность одиночного драйвера MAX1483, который работает с определенными перерывами между передачами. Использование режима отключения (shutdown mode) может еще больше снизить потребляемую мощность в системе, использующей технологию опроса через фиксированные промежутки времени или более длинные, детерминированные перерывы между передачами.
    Таблица 4. Соотношение между длиной телеграммы и потребляемым током при использовании драйвера MAX1483
    Телеграмма Ежесекундно Каждые 10 секунд Ежеминутно
    20-битовая 25,3 мкА 20,5 мкА 20,1 мкА
    100-битовая 61,1 мкА 24,1 мкА 20,7 мкА
    255-байтовая 560,4 мкА 74,0 мкА 29,0 мкА
    В дополнение к этим программным соображениям, аппаратные средства предлагают множество мест для усовершенствования в части энергопотребления. На рисунке 3 сравниваются токи, потребляемые различными трансиверами при передаче сигнала прямоугольной формы по 300-метровому кабелю с активными драйверами и приемниками. 75ALS176 и MAX1483 используют стандартную согласующую цепь 560Ом/120Ом/560Ом на обоих концах линии связи, в то время, как "истино безотказные" ("true failsafe") устройства (MAX3088 и MAX3471) имеют лишь 120-омные согласующие резисторы на обоих концах шины. При 20 Кбит/с токи потребления ранжируются от 12,2мА (MAX3471 с напряжением питания VCC = 3.3V) до 70мА (75ALS176). Таким образом, значительное сокращение потребления возникает немедленно, как только вы выбираете малопотребляющее устройство со свойством "истиной безотказности", которая, кроме того, исключает необходимость установки резисторов защитного смещения (на землю и на линию питания VCC). Убедитесь, что приемник выбранного вами приемопередатчика RS-485, выдает на выход правильные логические уровни для условий как замкнутой, так и разомкнутой цепи.
    Нажмите на изображение для увеличения. 

Название:	A184Fig03.gif 
Просмотров:	1 
Размер:	7.9 Кб 
ID:	1448 alt="" />
    Рисунок 3. Микросхемы приемопередатчиков сильно отличаются зависимостью тока потребления от скорости передачи данных.
    Злые шутки согласования
    Как было отмечено выше, согласующие резисторы устраняют отражения, вызваные рассогласованием импедансов, однако их недостаток - дополнительное рассеяние мощности. Их влияние показано в таблице 5, в которой приводятся токи потребления для различных приемопередатчиков (при активном драйвере) для условий отсутствия резисторов, использования только согласующих резисторов, а также комбинации согласующих резисторов и резисторов защитного смещения.
    Таблица 5. Использование согласующих резисторов и резисторов защитного смещения увеличивает потребляемый ток
    MAX1483 MAX3088 MAX3471 SN75ALS176
    IVCC (no RT) 60 мкА 517 мкА 74 мкА 22 мкА
    IVCC (RT =120) 24 мкА 22.5 мкА 19.5 мкА 48 мкА
    IVCC (RT = 560-120-560) 42 мкА N/A N/A 70 мкА
    Исключение согласования
    Первый способ уменьшения потребляемой мощности состоит в том, чтобы вообще устранить согласующие резисторы. Этот вариант возможен только для коротких линий связи и низких скоростей передачи данных, которые позволяют отражениям успокоиться еще до того, как данные будут обработаны приемником. Как показывает практика, согласование не нужно, если время нарастания сигнала по крайней мере в четыре раза превосходит время задержки одностороннего прохождения сигнала через кабель. Следующие шаги используют это правило для вычисления максимальной допустимой длины несогласованного кабеля:
    • Шаг 1. Для рассматриваемого кабеля найдите скорость одностороннего прохождения сигнала, обычно предоставляемую производителем кабеля как процентное отношение к скорости света в свободном пространстве (c = 3x108 м/с). Типовое значение для стандартного кабеля в поливинилхлоридной изоляции (состоящего их витой пары #24 AWG) составляет 203мм/нс.
    • Шаг 2. Из спецификации приемопередатчика RS-485 найдите его минимальное время нарастания (tr min). Например, для MAX3471 оно равно 750нс.
    • Шаг 3. Разделите это минимальное время нарастания на 4. Для MAX3471 получим tr min/4 = 750нс/4 = 187.5нс.
    • Шаг 4. Вычислите максимальную протяженность кабеля, для которой не требуется согласование: 187.5нс (230мм/нс) = 38м.
    Таким образом, MAX3471 может обеспечить приличное качество сигнала при передаче и приеме на скорости 64Кбит/с по 38-метровому кабелю без согласующих резисторов. Рисунок 4 демонстрирует достигнутое драматическое снижение потребления MAX3471, когда 30 метров кабеля без согласующего резистора используются вместо 300 метров кабеля и 120 согласующих резисторов.
    Нажмите на изображение для увеличения. 

Название:	A184Fig04.gif 
Просмотров:	1 
Размер:	4.4 Кб 
ID:	1449 alt="" />
    Рисунок 4. Согласующие резисторы - основной потребитель мощности.
    RC-согласование
    На первый взгляд, способность RC согласования блокировать постоянный ток является весьма многообещающей. Вы найдете, однако, что эта техника налагает определенные условия. Согласование состоит из последовательной RC цепочки, включенной параллельно дифференциальным входам приемника (A и B), как показано на рисунке 5. Несмотря на то, что R всегда равно волновому сопротивлению кабеля (Z0), выбор C требует некоторых рассуждений. Большая величина C обеспечивает хорошее согласование, позволяя любому сигналу видеть R, которое соответствует Z0, однако большие значения также увеличивают пиковое значение выходного тока драйвера. К сожалению, более длинные кабели требуют больших значений емкости C. Целые статьи были посвящены определению номинала C для достижения этого компромисса. Вы можете найти детальные уравнения на эту тему в руководствах, ссылки на которые приведены в конце настоящей статьи.
    Нажмите на изображение для увеличения. 

Название:	A184Fig05.gif 
Просмотров:	1 
Размер:	2.7 Кб 
ID:	1450 alt="" />
    Рисунок 5. RC согласование снижает потребление, однако требует тщательного выбора номинала C.
    Среднее напряжение сигнала - другой важный фактор, который часто игнорируется. Если только среднее напряжение сигнала не сбалансировано по постоянному току, эффект зубчатого контура (stair-stepping effect) по постоянному току вызывает значительные дрожания из-за эффекта, известного как "межсимвольная интерференция." Если коротко, то RC согласование эффективно для снижения потребления, однако оно склонно к разрушению качества сигнала. Поскольку RC согласование налагает так много ограничений на свое использование, лучшая альтернатива во многих случаях - отсутствие согласования вообще.
    Согласование на диодах Шотки
    Диоды Шотки предлагают альтернативный метод согласования, когда большая потребляемая мощность вызывает беспокойство. В отличие от других типов согласования, диоды Шотки не пытаются соответствовать волновому сопротивлению шины. Вместо этого, они просто подавляют положительные и отрицательные выбросы на фронтах импульсов, вызванные отражением. В результате, изменения напряжения ограничены положительным пороговым напряжением и нулем.
    Цепь согласования на диодах Шотки впустую рассеивает незначительную энергию, поскольку они проводят только при наличии положительных и отрицательных выбросов. С другой стороны, стандартное резистивное согласование (как с резисторами защитного смещения, так и без оных), постоянно рассеивает мощность. Рисунок 6 иллюстрирует использование диодов Шотки для борьбы с отражениями. Диоды Шотки не обеспечивают отказоустойчивую работу, однако уровни порогового напряжения, выбранные в приемопередатчиках MAX308X и MAX3471, дают возможность реализовать отказоустойчивую работу с этим типом согласования.
    Нажмите на изображение для увеличения. 

Название:	A184Fig06.gif 
Просмотров:	1 
Размер:	3.0 Кб 
ID:	1451 alt="" />
    Рисунок 6. Несмотря на дороговизну, цепь согласования на диодах Шотки имеет много достоинств.
    Диод Шотки, наилучшее доступное приближение к идеальному диоду (нулевое прямое напряжение Vf, нулевое время включения tON и нулевое время обратного восстановления trr), представляет большой интерес в качестве замены энергоемких согласующих резисторов. Недостаток такого согласования в системах на основе RS-485/RS-422 заключается в том, что диоды Шотки не могут подавлять все отражения. Как только отраженный сигнал угаснет ниже прямого напряжения диода Шотки, его энергия останется незатронутой согласующими диодами и сохранится до тех пор, пока не будет рассеяна кабелем. Существенно или нет это затяжное возмущение, зависит от величины сигнала на входах приемника.
    Главный недостаток Шотки-терминатора - его стоимость. Одна точка согласования требует двух диодов. Поскольку шина RS-485/RS-422 является дифференциальной, это число снова умножается на два (Рисунок 6). Использование на шине многжественных Шотки-терминаторов не является необычным.
    Терминаторы на диодах Шотки дают много преимуществ для систем на основе RS-485/RS-422, и экономия энергии - главное из них (Рисунок 7). Не нужно ничего вычислять, поскольку специфицированные ограничения для длины кабеля и скорости передачи данных будут достигнуты раньше, чем какие либо ограничения Шотки-терминатора. Другое преимущество заключается в том, что множественные Шотки-терминаторы в различных ответвлениях и на входах приемников улучшают качество сигнала без загрузки коммуникационной шины.
    Нажмите на изображение для увеличения. 

Название:	A184Fig07.gif 
Просмотров:	1 
Размер:	12.2 Кб 
ID:	1452 alt="" />
    Рисунок 7. Потребляемый ток в системах RS-485 сильно зависит от скорости передачи данных и типа согласования.
    Подведение итогов
    Когда скорость передачи данных высока и кабель имеет большую длину, в системе RS-485 трудно обеспечить сверхмалое потребление (в оригинале "flea power" - "мощность блохи", - Прим. пер.), поскольку возникает необходимость устанавливать на линии связи согласующие устройства (терминаторы). В этом случае приемопередатчики с функцией "истиной помехоустойчивости" на выходах приемников могут экономить энергию даже при использовании терминаторов, устраняя потребность в резисторах защитного смещения. Программная организация связи также позволяет снизить потребляемую мощность, переводя приемопередатчик в отключенное состояние или запрещая драйвер, когда он не используется.
    Для более низких скоростей и более коротких кабелей разница в энергопотреблении огромна: Передача данных со скоростью 60 Кбит/с по 30-метровому кабелю при использовании стандартного приемопередатчика SN75ALS176 со 120-омными согласующими резисторами потребует от системы электропитания ток 70мА. С другой стороны, использование MAX3471 при тех же самых условиях потребует только 2,5мА от источника питания.

      Возможность размещать комментарии к сообщениям отключена.

    Метки статей

    Свернуть

    Меток пока нет.

    Новые статьи

    Свернуть

    • Стандартный параллельный интерфейс на PC
      admin
      Основным назначением интерфейса Centronics (аналог-ИРПР-М) является подключение к компьютеру принтеров различных типов. Поэтому распределение контактов разъема, назначение сигналов, программные средства управления интерфейсом ориентированы именно на это использование. Вто же время с помощью данного интерфейса можно подключать к компьютеру и другие внешние устройства, имеющие разъем Centronics, а также специально разработанные УС.

      Основным достоинством использования Centronics для подключения УС по сравнению с ISA является значительно меньший риск вывести компьютер из строя. Главный недостаток этого подхода - значительно меньшая скорость обмена. Назначение 36 контактов разъема Centronics приведено в таблице 1.

      Таблица 1. Назначение контактов разъемов Centronics

      1 /STROBE Out Strobe (Строб)
      2 D0 Out Data Bit 0
      3 D1 Out Data Bit 1
      4 D2 Out Data Bit 2
      5 D3 Out Data Bit 3
      6 D4 Out Data Bit 4
      7 D5 Out Data Bit 5
      8 D6 Out Data Bit 6
      9 D7 Out Data Bit 7
      10 /ACK In Acknowledge (Подтверждение)
      ...
      08.02.2017, 22:45
    • Современные микросхемы драйверов RS-485 фирмы MAXIM
      admin
      Журнал «Схемотехника» №10 2002 г.
      Олег Николайчук
      Целью настоящей статьи является ознакомление читателей с современными микросхемами драйверов сети RS485 фирмы MAXIM, их основными параметрами и особенностями.
      Интерфейс RS485 наиболее часто используется при создании современных локальных сетей различного назначения, как в промышленных изделиях, так и в любительской практике. Основными преимуществами интерфейса являются:
      • Относительно низкая себестоимость микросхем драйверов, что снижает стоимость аппаратной реализации сетевых диспетчеров, т.е. узлов связи между сетевой средой (линиями связи) и ядром станции (узла) сети, т.е. микроконтроллерной или микропроцессорной системой;
      • Использование в сетях на базе интерфейса RS485 всего трех проводов (третий, общий, не всегда является обязательным), что значительно снижает себестоимость всей системы, поскольку известно, что себестоимость сетевой среды современных локальных сетей практически всегда составляет более 60% от стоимости всей системы;
      • Микросхемы драйверов имеют малые габаритные размеры. Наиболее часто используются микросхемы, выполненные в корпусе DIP8 со стандартным расположением выводов, ставшим , промышленным стандартом. Микросхемы драйверов используют всего несколько дискретных элементов для цепей защиты, использование которых не является обязательным. Малые габаритные размеры микросхем драйверов и минимальное количество обвязки экономит площадь печатной платы, что также положительно сказывается на стоимости системы;
      • Современные микросхемы имеют достаточно низкое энергопотребление, многие из них при отсутствии активности в сети автоматически переходят в режим экономии, что снижает энергопотребление системы;
      • Современные микросхемы драйверов имеют повышенную нагрузочную способность. Если раннее большинство микросхем было насчитано на работу с 32 станциями, то современные модели обеспечивают нормальное функционирование до 256 станций;
      • В настоящее время выпускаются микросхемы в высокой предельной скоростью передачи. Это позволяет создавать высокоскоростные сети, и снижает количество ошибок в сети за счет улучшения формы передаваемого сигнала;
      • Драйверы интерфейса RS485 имеют достаточно простое управление. Особенности организации сетей, их схемотехника, способы управления доступом к каналу и примеры программирования достаточно описаны [1-11].
      • Микросхемы интерфейса RS485 выпускают многие фирмы мира [12]. Однако несомненным лидером в разработке и выпуске новых микросхем драйверов является известная фирма MAXIM [13]. В настоящее время фирма выпускает более 80 типов микросхем драйверов интерфейса RS485/422.
      Все микросхемы драйверов можно условно разделить на 4 группы: микросхемы с питанием +5 В, микросхемы с расширенным диапазоном питания от 3 до 5.5 В, низковольтные микросхемы с питанием 3.3 В и микросхемы со встроенной оптической изоляцией. Основные технические характеристики этих групп микросхем приведены в таблицах 1 — 4 соответственно.
      В приведенных таблицах приняты следующие обозначения:
      В колонке «Разрешение RxD»: P — обозначает, что управляющий вход приемника переключает его либо в открытое состояние, либо переводит его в режим энергосбережения, O — означает, что управляющий вход тоько включает/выключает приемник.
      В колонке «Режим»: H — означает полудуплексный режим, т.е. интерфейс RS485, F — обозначает полный дуплексный режим, т.е. интерфейс RS422.
      Прежде чем приступить к анализу таблиц, определим критерии отбора микросхем для последующего рассмотрения. Мы ставим своей целью ознакомление читателя с широко используемыми микросхемами интерфейса RS485 (но не RS422), т.е. с микросхемами, работающими в полудуплексном режиме, которые в колонке «Режим» имеют символ «H». У этих микросхем входы приемника объединены с выходами передатчика и образуют две линии приема/передачи, «A» и «B». Мы не будем рассматривать ряд микросхем, содержащих только приемники или только передатчики, поскольку их применение также весьма ограничено. И наконец, мы будем рассматривать только микросхемы, выпускаемые в корпусе с восемью выводами (кроме микросхем со встроенной оптической изоляцией и микросхем в корпусе 6/5/SO), как наиболее распространенные и используемые.
      Таблица 1. Микросхемы драйверов интерфейса RS485/422 с питанием +5 В
      ТИП Нали чие TxD Нали чие RxD Разре шение TxD Разре шение RxD Состо яние RxD Режим Быстро действие, Mbps Кол-во стан ций Защ ита ESD Пит ание, V Ток потре бления, mA Ток эко номии, чA Корпус
      MAX1481 1 1 NC F 0.25 256 - 5 0.3 0.1 10/µMAX
      MAX1482 1 1 O F 0.25 256 - 5 0.02 0.1 14/PDIP.300
      14/SO.150
      MAX1483 1 1 O H 0.25 256 - 5 0.02 0.1 8/µMAX
      8/PDIP.300
      8/SO.150
      MAX1484 1 1 NC F 12 256 - 5 0.3 - 10/µMAX
      MAX1485 1 1 - NC H- F 0.25 256 - 5 0.3 - 10/µMAX
      MAX1486 1 1 - NC H- F 12 256 - 5 0.3 - 10/µMAX
      MAX1487 MAX1487E 1 1 O H 2.5 128 -
      ±15kV
      5 0.23 - 8/µMAX
      8/PDIP.300
      8/SO.150
      MAX3040 4 0 - - - 0.25 - ±10kV 5 1 0.002 16/SO.150
      16/SO.300
      16/TSSOP
      MAX3041 4 0 - - - 2.5 - ±10 kV 5 1 0.002 16/SO.150
      16/SO.300
      16/TSSOP
      MAX3042B 4 0 - - - 20 - ±10 kV 5 1 0.002 16/SO.150
      16/SO.300
      16/TSSOP
      MAX3043 4 0 - - - 0.250 - ±10 kV 5 1 0.002 16/SO.150
      16/SO.300
      16/TSSOP
      ...
      08.02.2017, 22:45
    • Системный контроллер ввода-вывода для сопряжения шин PCI и ISA
      admin
      Журнал «Chip News» №6 2001 г.
      Ракович Н. Н.
      Мы уже беседовали на страницах журнала о продукции компании Winbond [Л.1], выпускающей широкую гамму разнообразных микросхем, начиная с памяти и микроконтроллеров и заканчивая приборами для мобильных средств связи и распознавания речи. Примерно в середине этого списка находятся ИС для компьютеров. В данной статье рассмотрим контроллеры ввода-вывода W83С553F и W83С554F, которые выполняет функции моста между шинами PCI и ISA. Тема эта должна быть интересна хотя бы уже потому, что смена поколений компьютеров требует от разработчиков встроенных плат с интерфейсом ISA стремительной модернизации оборудования, с тем, чтобы не потерять своих заказчиков.

      Терминология (более чем кратко)....
      08.02.2017, 22:45
    • Реализация последовательной асинхронной передачи данных в микроконтроллерах PIC
      admin
      Введение.
      Серия PIC16Cxx от Microchip Technology, Inc. - это второе поколение высокопроизводительных восьмиразрядных микроконтроллеров на базе EPROM. Некоторые микроконтроллеры из этой серии (например PIC16C71 и PIC16C84) не имеют встроенного последовательного асинхронного порта. Эта статья содержит описание последовательного асинхронного интерфейса ( полудуплексное RS-232 соединение ) с программной обработкой прерывания для микроконтроллеров PIC16Cxx. Эти микроконтроллеры могут работать на очень большой скорости, с минимальной длительностью такта 250нс ( при частоте 16МГц ). Для тестирования RS-232 режима предлагается использовать простой цифровой вольтметр / систему опроса данных ( Digital Volt Meter / Analog Data Acquisition Systems ) выполненный на PIC16C71, Этот прибор принимает команды от ПК и передает обратно восмибитные значения с выбранного АЦП канала.

      Реализация.
      Ниже приведено подробное описание реализации полудуплексного RS-232 интерфейса с программной обработкой прерывания для PIC16C71. В программе примера в качестве передающего выхода используется RB7, а для приема – RTCC/RA4. Конечно, и вход и выход соединяются через соответствующий преобразователь уровней сигнала RS-232 / ТТЛ. Описание преобразователя уровней напряжения дано в разделе Аппаратная часть.

      Режим передачи. Передающий режим в программе напрямую связан с и...
      08.02.2017, 22:45
    • Простой конвертер RS-232-TTL
      admin

      Журнал «Схемотехника» №1 2000 г.
      Александр Нечаев
      При разработке различного рода электронных устройств с использованием микроконтроллеров очень часто оказывается полезной возможность подключения их к персональному компьютеру через последовательный порт. Однако напрямую это сделать невозможно, поскольку по стандарту...
      08.02.2017, 22:45
    • Программирование портов ввода/вывода LPT и ISA
      admin
      Данный материал основан на моём (его) личном опыте работы с материнской платой неизвестного (нет, не солдата) производителя. Чипсет - SIS. Если вдруг в Вашем случае дело будет обстоять другим образом, напишите мне. Также хочу сразу предупредить - я не профессиональный программист!!! Поэтому не ругайте меня за отсутствие проф. терминов, может быть кривых объяснений или ещё каких недочётов,...
      08.02.2017, 22:45
    Обработка...
    X