Объявление

Свернуть
Пока нет объявлений.

Однокристальные системы сбора данных семейства ADuC8xx

Свернуть
X
Свернуть
  •  

  • Однокристальные системы сбора данных семейства ADuC8xx

    Алексей Соловьев
    В течение многих лет заветной мечтой разработчика электронной аппаратуры систем сбора данных была мысль о том, что скоро-скоро появится микросхема, которая сможет «все». Действительно, попытки выпустить подобные микросхемы делались рядом известных западных фирм-производителей. Как правило, эти микросхемы представляли собой микроконтроллер, построенный по стандартной цифровой технологии, в который тем или иным способом были интегрированы функции аналого-цифрового и цифро-аналогового преобразования. Реализация функций была различна — это могли быть широтно-импульсные модуляторы, комбинации компараторов и интеграторв и т. п. Однако для получения максимальной точности приходилось либо останавливать работу контроллера при выполнении аналого-цифровых и цифро-аналоговых преобразований, либо просто использовать меньшее число разрядов преобразователей из-за сильного влияния цифровой части микроконтроллера на аналоговую. Поэтому головная боль разработчика «железа» по комбинации аналоговой и цифровой части перекладывалась на автора прикладного программного обеспечения.

    Похоже, что сегодня заветная мечта разработчика воплотилась-таки в реальность. Отличительной особенностью новейшего семейства микросхем серии ADuC8xx является сам их принцип построения. Эти микросхемы не являются «микроконтроллером со встроенными АЦП-ЦАП». Они представляют собой удачно скомбинированные АЦП и ЦАП со встроенным в них микроконтроллером и флэш-памятью. Поэтому их основным достоинством является высокая точность аналого-цифрового и цифро-аналогового преобразования, удачно сочетаемая с возможностью непосредственной обработки получаемой информации. Ниже будут рассмотрены основные характеристики первых представителей семейства микросхем ADuC8xx и даны некоторые примеры их практического использования.

    ADuC812 — 8-канальная, 12-разрядная система сбора данных со встроенным микроконтроллером

    Первой микросхемой семейства ADuC8xx, выпущенной в серийное производство в мае 1999 года, является ADuC812 [1]. Архитектура ее представлена на рис. 1. Микросхема состоит из двух основных частей — аналоговой и цифровой.

    Рис. 1. Структура микросхемы ADuC812

    Рассмотрим структуру аналоговой части. Аналоговые входы микросхемы соединены с 8-входовым мультиплексором. На выходе мультиплексора стоит усилитель выборки/хранения, фиксирующий значение аналогового сигнала на выбранном входе на время осуществления преобразования АЦП. Помимо него, к аналоговой части микросхемы относятся также два 12-разрядных ЦАП с буферными усилителями на выходе каждого из них. Источник опорного напряжения может использоваться либо внутренний, напряжением 2,5 В и температурной стабильностью 40 ppm/°C, либо внешний, напряжение которого не превышает уровень источника питания. Также к входному мультиплексору подключен внутренний датчик температуры, позволяющий оперативно измерять температуру кристалла (а значит, с определенными поправками, и температуру окружающей среды), позволяющий, к примеру, осуществлять компенсацию температуры холодного спая термопар, подсоединенных к одному или нескольким входам микросхемы. На аналоговые входы допустима подача сигналов в диапазоне от 0 до Vref.

    Интерфейсом между аналоговой и цифровой частями микросхемы служат регистры управления и калибровки. Цифровая часть состоит из собственно ядра микроконтроллера, полностью совместимого по системе команд с наиболее широко распространенными в мире микроконтроллерами серии 8051, блока памяти и набора дополнительных периферийных устройств. Микросхема ADuC812 может питаться от источника напряжением 3 или 5 В и имеет несколько экономичных режимов работы.

    Рассмотрим более подробно структуру АЦП, ЦАП и цифровой части микросхемы.

    Как уже упоминалось, первый представляет собой АЦП последовательных приближений, который может работать как в режиме единичных, так и непрерывных преобразований с максимальной скоростью 200 тысяч преобразований в секунду (одно преобразование каждые 5 мкс). Для запоминания результатов преобразования используется либо режим прерываний (как правило, его удобно использовать при невысокой частоте работы АЦП), либо режим прямого доступа, не влияющий на работу собственно контроллера и позволяющий сохранять результаты преобразования во внешнем ОЗУ с адресуемым пространством 16 Мбайт. АЦП имеет очень хорошую точность (соотношение сигнал/шум 70 дБ, что соответствует реальному разрешению на уровне 11,5 разрядов) и высокую линейность (типовая интегральная нелинейность на уровне ±1/2 МЗР). Микросхема выпускается с заводской калибровкой под оптимальную производительность. При каждом включении источника питания микросхемы эти коэффициенты записываются в соответствующие регистры.

    В большинстве приложений этих коэффициентов достаточно для хорошей работы системы, однако пользователь в процессе работы может перезаписать их для избавления от дополнительных системных ошибок. Более подробно о режимах калибровки написано в [2]. Все режимы работы АЦП определяются тремя регистрами управления, находящимися во внутренней памяти микроконтроллера. Результаты преобразования могут быть считаны из двух регистров, один из которых показывает номер канала мультиплексора и старшие 4 бита результата, а второй — младшие 8 бит результата.

    Что касается ЦАП, они управляются одним регистром управления и четырьмя регистрами данных. Обновление информации на выходе ЦАПов может происходить отдельно для каждого из них, либо одновременно. Кроме того, каждый из них может быть сконфигурирован для работы либо в 12-разрядном, либо 8-разрядном режимах.

    Микроконтроллер представляет собой «стандартное» ядро 8051 с максимальной рабочей частотой 16 МГц (12 МГц — типовая), тремя байтовыми портами ввода/вывода, один из которых, порт 3, обладает повышенной нагрузочной способностью, тремя 16-разрядными таймерами/счетчиками и расширенной периферией, которая будет описана ниже.

    Блок памяти состоит из флэш-памяти программ объемом 8 кбайт, флэш-памяти данных объемом 640 байт и ОЗУ объемом 256 байт. Информация во внутреннюю флэш-память программ может быть записана как с любого внешнего программатора в «параллельном» режиме через порты микроконтроллера, так и непосредственно в системе в «последовательном» режиме через стандартный асинхронный последовательный порт. Подробное описание протокола и процедур программирования ADuC812 непосредственно в системе представлено в [3].

    К блоку расширенной периферии можно отнести дополнительные аппаратные возможности микросхемы, отсутствующие в оригинальной архитектуре 8051. Это дополнительные последовательные порты, дающие микросхеме возможность работы в ставших стандартными 2-проводных и 3-проводных синхронных протоколах SPI и I2C.

    Также микросхема дополнена двумя мониторами, один из которых следит за отсутствием «зависания» микроконтроллера, и в случае обнаружения оного вырабатывает сигнал сброса в начальное состояние, а второй следит за тем, чтобы напряжение источника питания не падало ниже определенного, задаваемого пользователем значения (от 2,6 до 4,6 В). Он позволяет в случае, близком к потере питания, сохранить содержимое внутренних регистров, запомнить свое состояние и возобновить работу только после восстановления питания.

    В заключение необходимо отметить, что данная микросхема поддерживается инструментальными средствами (EVAL-ADuC812), состоящими из эволюционной платы, соединяемой с компьютером, комплектом программного обеспечения (полная версия Ассемблера и ограниченная (2 кбайта кода) версия С, программного симулятора, отладчика и последовательного загрузчика/программатора флэш-памяти), необходимой документации, блока питания и двух образцов микросхем.

    AduC824 — микросхема для применения в индустриальных интеллектуальных датчиках

    Структура новейшей микросхемы семейства представлена на рис. 2 [4]. Для краткости остановимся на отличительных чертах и характеристиках данной микросхемы.

    Рис. 2. Структура микросхемы ADuC824

    Итак, в аналоговой части вместо 8-канального 12-разрядного АЦП последовательных приближений применены два сигма-дельта АЦП. Один из них (основной канал), имеющий реальное разрешение более 19 разрядов при входном сигнале ±2,56 В, снабжен программируемым усилителем, позволяющим получить реальное 13-разрядное разрешение при входном сигнале ±20 мВ. Дополнительный канал характеризуется 16-разрядным разрешением. Кроме того, на кристалле имеются два согласованных (с разбросом не хуже 0,1 %) стабильных источника тока величиной 200 мкА, которые могут служить для запитки внешних датчиков.

    Блок ЦАП состоит из одного прецизионного 12-разрядного ЦАП с вольтовым выходом, который может работать либо в 8-разрядном, либо в 12-разрядном режиме с диапазоном выходных сигналов от 0 до 2,5 В (при использовании внутреннего источника опорного напряжения), либо от 0 до напряжения источника питания на нагрузку до 10 кОм/100 пФ.

    Еще одной отличительной особенностью данной микросхемы является ее малое энергопотребление (всего 3 мА при питании от 3-вольтового источника), что дает возможность ее реального использования в индустриальных приложениях с питанием от токовой петли. Это стало возможным за счет применения специального тактового генератора, позволяющего «завести» микросхему от стандартного резонатора частотой 32768 кГц.

    Остальные части микросхемы и комплект инструментальных средств имеют практически ту же структуру и функции, что и у вышеописанной микросхемы ADuC812.

    В заключение хочется отметить, что развитие семейства микросхем ADuC8хх на этом не заканчивается, и в ближайшем будущем следует ожидать появления новых микросхем с иными отличительными чертами.

    Литература
    1. ADuC812 — MicroconverterФ, Multi-channel 12-bit ADC with Embedded Flash MCU, Rev.0, 5/99, Analog Devices (Справочный листок).
    2. ADuC812 Software ADC Calibration, MicroconverterФ Technical Note — uC005, Rev.1.0, 1/00, Analog Devices
    3. Understanding the Serial Download Protocol, MicroconverterФ Technical Note- uC004, Rev.1.0, 9/99, Aaanalog Devices.
    4. ADuC824 — MicroconverterФ, Dual-channel 16 & 24-bit ADCs with Embedded MCU, Rev.Pr.B, 9/99, (Preliminary Technical Data), Analog Devices (Предварительный справочный листок).
      Возможность размещать комментарии к сообщениям отключена.

    Метки статей

    Свернуть

    Меток пока нет.

    Новые статьи

    Свернуть

    • «NO EXCUSES» — специальная программа компании MOTOROLA
      от admin
      Дмитрий Панфилов
      «NO EXCUSES» — специальная программа компании MOTOROLA

      Ни для кого не секрет, что микропроцессоры и микроконтроллеры находят самое широкое применение в различных областях науки и техники. Сегодня трудно указать область электроники, где не использовались бы микроконтроллеры. Количество...
      10.02.2017, 14:56
    • Частотомер на PIC16F873 с двух строчным ЖКИ способный измерять частоты
      от admin
      alt="" />Частотомер на PIC16F873 с двух строчным ЖКИ способный измерять частоты от 10Гц до 45МГц. Чувствительность по входу около 50мВ, входное сопротивление 250 Ком, входная ёмкость 15пФ. Питание девятивольтная батарея 6F22.В память можно вносить значения, которые будут, прибавлены к входной частоте...
      10.02.2017, 14:56
    • Управление нагрузкой 220В переменного напряжения с использованием симисторов
      от admin
      Для плавного управления нагрузкой, например, лампой освещения, можно использовать симистор. Открывается симистор током при подачи на управляющий электрод импульса. Закрывается, когда ток, проходящий через него, становится равным нулю, когда переменное напряжение меняет знак.
      ...
      10.02.2017, 14:56
    • Управление модулем Ke-USB24A из Excel
      от admin
      Всю прелесть программирования USB модуля Ke-USB24A можно оценить когда встает вопрос о необходимости написания программы на каком-либо не очень широко распространенном языке или для какой-либо среды, которая, казалось бы не предусматривает возможность работы с USB устройствами....
      10.02.2017, 14:55
    • Управление матрицей 8х8 - легко!
      от admin
      Матрица управляется так же как и 7-сегментные индикаторы - динамически. Мега16 портом А управляет одной координатой (выбирает сторку для вывода инфы), порт С - выводит ту самую информацию. Информация берётся из массива.
      />

      />
      Что бы пользоваться редактором, нужно переменную STROKA из примера переименовать в rows_arr.
      Вложения: matrica8x8.fcf_avr (56 Кб) Любители ПИКов, вам не составит труда пореколбасить этот п...
      10.02.2017, 14:55
    • То, что улучшает нашу жизнь (микросхемы для домашних и игровых устройств)
      от admin
      Журнал «Компоненты и технологии» №8 2001 г.
      Ракович Н. Н.

      "В человеке все должно быть прекрасно… и у него в доме тоже"
      (Почти по А. П. Чехову)
      В последнее время при чтении профессиональных электронных журналов и статей, посвященных использованию электронных компонентов, у меня возникло и окрепло унылое ощущение, что вся гигантская...
      10.02.2017, 14:55
    Обработка...
    X